Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37977241

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are embryo- and cardiotoxic to fish that might be associated with improper intracellular Ca2+ management. Since sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) is a major regulator of intracellular Ca2+, the SERCA activity and the contractile properties of rainbow trout (Oncorhynchus mykiss) ventricle were measured in the presence of 3- and 4-cyclic PAHs. In unfractionated ventricular homogenates, acute exposure of SERCA to 0.1-1.0 µM phenanthrene (Phe), retene (Ret), fluoranthene (Flu), or pyrene (Pyr) resulted in concentration-dependent increase in SERCA activity, except for the Flu exposure, with maximal effects of 49.7-83 % at 1 µM. However, PAH mixture did not affect the contractile parameters of trout ventricular strips. Similarly, all PAHs, except Ret, increased the myotomal SERCA activity, but with lower effect (27.8-40.8 % at 1 µM). To investigate the putative chronic effects of PAHs on SERCA, the atp2a2a gene encoding trout cardiac SERCA was expressed in human embryonic kidney (HEK) cells. Culture of HEK cells in the presence of 0.3-1.0 µM Phe, Ret, Flu, and Pyr for 4 days suppressed SERCA expression in a concentration-dependent manner, with maximal inhibition of 49 %, 65 %, 39 % (P < 0.05), and 18 % (P > 0.05), respectively at 1 µM. Current findings indicate divergent effects of submicromolar PAH concentrations on SERCA: stimulation of SERCA activity in acute exposure and inhibition of SERCA expression in chronic exposure. The depressed expression of SERCA is likely to contribute to the embryo- and cardiotoxicity of PAHs by depressing muscle function and altering gene expression.


Assuntos
Oncorhynchus mykiss , Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Animais , Humanos , Oncorhynchus mykiss/metabolismo , Fenantrenos/toxicidade , Fenantrenos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Estresse do Retículo Endoplasmático , Cálcio/metabolismo
2.
J Exp Biol ; 225(17)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35950359

RESUMO

The spatial pattern of electrical activation is crucial for a full understanding of fish heart function. However, it remains unclear whether there is regional variation in action potential (AP) morphologies and underlying ion currents. Because the direction of depolarization and spatial differences in the durations of ventricular APs set limits to potential patterns of ventricular repolarization, we determined AP morphologies, underlying ion currents and ion channel expression in four different ventricular regions (spongy myocardium; and apex, base and middle of the compact myocardium), and correlated them with in vivo electrocardiograms (ECGs) in rainbow trout (Oncorhynchus mykiss). ECGs recorded from three leads indicated that the depolarization and repolarization of APs propagate from base to apex, and the main depolarization axis of the ventricle is between +90 and +120 deg. AP shape was uniform across the whole ventricle, and little regional differences were found in the density of repolarizing K+ currents or depolarizing Ca2+ and Na+ currents and the underlying transcripts of ion channels, providing compelling evidence for the suggested excitation pattern. The spatial uniformity of AP durations and base-to-apex propagation of activation with a relatively slow velocity of propagation indicates no special ventricular conduction pathway in the trout ventricle such as the His-Purkinje system of mammalian hearts. The sequence of repolarization is solely determined by activation time without being affected by regional differences in AP duration.


Assuntos
Oncorhynchus mykiss , Potenciais de Ação/fisiologia , Animais , Coração/fisiologia , Ventrículos do Coração , Mamíferos , Miocárdio/metabolismo , Oncorhynchus mykiss/metabolismo
3.
J Cardiovasc Pharmacol ; 79(5): 670-677, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35377576

RESUMO

ABSTRACT: In cardiac myocytes, the slow component of the delayed rectifier K+ current (IKs) ensures repolarization of action potential during beta-adrenergic activation or when other repolarizing K+ currents fail. As a key factor of cardiac repolarization, IKs should be present in model species used for cardiovascular drug screening, preferably with pharmacological characteristics similar to those of the human IKs. To this end, we investigated the effects of inhibitors and activators of the IKs on KCNQ1 and KCNQ1 + KCNE1 channels of the zebrafish, an important model species, in Chinese hamster ovary cells. Inhibitors of IKs, chromanol 293B and HMR-1556, inhibited zebrafish IKs channels with approximately similar potency as that of mammalian IKs. Chromanol 293B concentration for half-maximal inhibition (IC50) of zebrafish IKs was at 13.1 ± 5.8 and 13.4 ± 2.8 µM for KCNQ1 and KCNQ1+KCNE1 channels, respectively. HMR-1556 was a more potent inhibitor of zebrafish IKs channels with IC50 = 0.1 ± 0.1 µM and 1.5 ± 0.8 µM for KCNQ1 and KCNQ1 + KCNE1 channels, respectively. R-L3 and mefenamic acid, generally identified as IKs activators, both inhibited zebrafish IKs. R-L3 almost completely inhibited the current generated by KCNQ1 and KCNQ1 + KCNE1 channels with similar potency (IC50 1.1 ± 0.4 and 1.0 ± 0.4 µM, respectively). Mefenamic acid partially blocked zebrafish KCNQ1 (IC50 = 9.5 ± 4.8 µM) and completely blocked KCNQ1 + KCNE1 channels (IC50 = 3.3 ± 1.8 µM). Although zebrafish IKs channels respond to IKs inhibitors in the same way as mammalian IKs channels, their response to activators is atypical, probably because of the differences in the binding domain of KCNE1 to KCNQ1. Therefore, care must be taken when translating the results from zebrafish to humans.


Assuntos
Canal de Potássio KCNQ1 , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Animais , Células CHO , Cricetinae , Cricetulus , Canal de Potássio KCNQ1/genética , Canal de Potássio KCNQ1/metabolismo , Ácido Mefenâmico , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Peixe-Zebra
4.
J Exp Biol ; 224(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33914031

RESUMO

Heat tolerance of heart rate in fish is suggested to be limited by impaired electrical excitation of the ventricle due to the antagonistic effects of high temperature on Na+ (INa) and K+ (IK1) ion currents (INa is depressed at high temperatures while IK1 is resistant to them). To examine the role of Na+ channel proteins in heat tolerance of INa, we compared temperature dependencies of zebrafish (Danio rerio, warm-dwelling subtropical species) and rainbow trout (Oncorhynchus mykiss, cold-active temperate species) ventricular INa, and INa generated by the cloned zebrafish and rainbow trout NaV1.4 and NaV1.5 Na+ channels in human embryonic kidney (HEK) cells. Whole-cell patch-clamp recordings showed that zebrafish ventricular INa has better heat tolerance and slower inactivation kinetics than rainbow trout ventricular INa. In contrast, heat tolerance and inactivation kinetics of zebrafish and rainbow trout NaV1.4 channels are similar when expressed in the identical cellular environment of HEK cells. The same applies to NaV1.5 channels. These findings indicate that thermal adaptation of ventricular INa is largely achieved by differential expression of Na+ channel alpha subunits: zebrafish that tolerate higher temperatures mainly express the slower NaV1.5 isoform, while rainbow trout that prefer cold waters mainly express the faster NaV1.4 isoform. Differences in elasticity (stiffness) of the lipid bilayer and/or accessory protein subunits of the channel assembly may also be involved in thermal adaptation of INa. The results are consistent with the hypothesis that slow Na+ channel kinetics are associated with increased heat tolerance of cardiac excitation.


Assuntos
Oncorhynchus mykiss , Animais , Coração , Humanos , Isoformas de Proteínas/genética , Temperatura , Peixe-Zebra
5.
J Comp Physiol B ; 191(2): 327-346, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33575867

RESUMO

Atrioventricular (AV) nodal tissue synchronizes activities of atria and ventricles of the vertebrate heart and is also a potential site of cardiac arrhythmia, e.g., under acute heat stress. Since ion channel composition and ion currents of the fish AV canal have not been previously studied, we measured major cation currents and transcript expression of ion channels in rainbow trout (Oncorhynchus mykiss) AV tissue. Both ion current densities and expression of ion channel transcripts indicate that the fish AV canal has a characteristic electrophysiological phenotype that differs from those of sinoatrial tissue, atrium and ventricle. Two types of cardiomyocytes were distinguished electrophysiologically in trout AV nodal tissue: the one (transitional cell) is functionally intermediate between working atrial/ventricular myocytes and the other (AV nodal cell) has a less negative resting membrane potential than atrial and ventricular myocytes and is a more similar to the sinoatrial nodal cells in ion channel composition. The AV nodal cells are characterized by a small or non-existent inward rectifier potassium current (IK1), low density of fast sodium current (INa) and relatively high expression of T-type calcium channels (CACNA3.1). Pacemaker channel (HCN4 and HCN2) transcripts were expressed in the AV nodal tissue but If current was not found in enzymatically isolated nodal myocytes. The electrophysiological properties of the rainbow trout nodal cells are appropriate for a slow rate of action potential conduction (small INa) and a moderate propensity for pacemaking activity (absence of IK1).


Assuntos
Oncorhynchus mykiss , Animais , Nó Atrioventricular , Átrios do Coração , Ventrículos do Coração , Canais Iônicos/genética
6.
J Comp Physiol B ; 189(6): 735-749, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31679058

RESUMO

Inward rectifier K+ (Kir2) channels are critical for electrical excitability of cardiac myocytes. Here, we examine expression of Kir2 channels in the heart of three Gadiformes species, polar cod (Boreogadus saida) and navaga (Eleginus nawaga) of the Arctic Ocean and burbot (Lota lota) of the temperate lakes to find out the role of Kir2 channels in cardiac adaptation to cold. Five boreal freshwater species: brown trout (Salmo trutta fario), arctic char (Salvelinus alpinus), roach (Rutilus rutilus), perch (Perca fluviatilis) and pike (Esox lucius), and zebrafish (Danio rerio), were included for comparison. Transcript expression of genes encoding Kir2.1a, - 2.1b, - 2.2a, - 2.2b and - 2.4 was studied from atrium and ventricle of thermally acclimated or acclimatized fish by quantitative PCR. Kir2 composition in the polar cod was more diverse than in other species in that all Kir2 isoforms were relatively highly expressed. Kir2 composition of navaga and burbot differed from that of the polar cod as well as from those of other species. The relative expression of Kir2.2 transcripts, especially Kir2.2b, was higher in both atrium and ventricle of navaga and burbot (56-89% from the total Kir2 pool) than in other species (0.1-11%). Thermal acclimation induced only small changes in cardiac Kir2 transcript expression in Gadiformes species. However, Kir2.2b transcripts were upregulated in cold-acclimated navaga and burbot hearts. All in all, the cardiac Kir2 composition seems to be dependent on both phylogenetic position and thermal preference of the fish.


Assuntos
Organismos Aquáticos , Peixes/metabolismo , Água Doce , Regulação da Expressão Gênica/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Clonagem Molecular , Ecossistema , Peixes/classificação , Átrios do Coração/metabolismo , Ventrículos do Coração/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Especificidade da Espécie , Temperatura
7.
Pflugers Arch ; 470(12): 1753-1764, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30116893

RESUMO

Zebrafish are increasingly used as a model for human cardiac electrophysiology, arrhythmias, and drug screening. However, K+ ion channels of the zebrafish heart, which determine the rate of repolarization and duration of cardiac action potential (AP) are still incompletely known and characterized. Here, we provide the first evidence for the presence of the slow component of the delayed rectifier K+channels in the zebrafish heart and characterize electrophysiological properties of the slow component of the delayed rectifier K+current, IKs. Zebrafish atrium and ventricle showed strong transcript expression of the kcnq1 gene, which encodes the Kv7.1 α-subunit of the slow delayed rectifier K+ channel. In contrast, the kcne1 gene, encoding the MinK ß-subunit of the delayed rectifier, was expressed at 21 and 17 times lower level in ventricle and atrium, respectively, in comparison to the kcnq1. IKs was observed in 62% of ventricular myocytes with mean (± SEM) density of 1.23 ± 0.37 pA/pF at + 30 mV. Activation rate of IKs was 38% faster (τ50 = 1248 ± 215 ms) than kcnq1:kcne1 channels (1725 ± 792 ms) expressed in 3:1 ratio in Chinese hamster ovary cells. Microelectrode experiments demonstrated the functional relevance of IKs in the zebrafish heart, since 100 µM chromanol 293B produced a significant prolongation of AP in zebrafish ventricle. We conclude that AP repolarization in zebrafish ventricle is contributed by IKs, which is mainly generated by homotetrameric Kv7.1 channels not coupled to MinK ancillary ß-subunits. This is a clear difference to the human heart, where MinK is an essential component of the slow delayed rectifier K+channel.


Assuntos
Potenciais de Ação , Canal de Potássio KCNQ1/metabolismo , Miócitos Cardíacos/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Canal de Potássio KCNQ1/genética , Miócitos Cardíacos/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
8.
J Exp Biol ; 221(Pt 10)2018 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-29739832

RESUMO

Calcium channels are necessary for cardiac excitation-contraction (E-C) coupling, but Ca2+ channel composition of fish hearts is still largely unknown. To this end, we determined transcript expression of Ca2+ channels in the heart of zebrafish (Danio rerio), a popular model species. Altogether, 18 Ca2+ channel α-subunit genes were expressed in both atrium and ventricle. Transcripts for 7 L-type (Cav1.1a, Cav1.1b, Cav1.2, Cav1.3a, Cav1.3b, Cav1.4a, Cav1.4b), 5 T-type (Cav3.1, Cav3.2a, Cav3.2b, Cav3.3a, Cav3.3b) and 6 P/Q-, N- and R-type (Cav2.1a, Cav2.1b, Cav2.2a, Cav2.2b, Cav2.3a, Cav2.3b) Ca2+ channels were expressed. In the ventricle, T-type channels formed 54.9%, L-type channels 41.1% and P/Q-, N- and R-type channels 4.0% of the Ca2+ channel transcripts. In the atrium, the relative expression of T-type and L-type Ca2+ channel transcripts was 64.1% and 33.8%, respectively (others accounted for 2.1%). Thus, at the transcript level, T-type Ca2+ channels are prevalent in zebrafish atrium and ventricle. At the functional level, peak densities of ventricular T-type (ICaT) and L-type (ICaL) Ca2+ current were 6.3±0.8 and 7.7±0.8 pA pF-1, respectively. ICaT mediated a sizeable sarcolemmal Ca2+ influx into ventricular myocytes: the increment in total cellular Ca2+ content via ICaT was 41.2±7.3 µmol l-1, which was 31.7% of the combined Ca2+ influx (129 µmol l-1) via ICaT and ICaL (88.5±20.5 µmol l-1). The diversity of expressed Ca2+ channel genes in zebrafish heart is high, but dominated by the members of the T-type subfamily. The large ventricular ICaT is likely to play a significant role in E-C coupling.


Assuntos
Canais de Cálcio/metabolismo , Regulação da Expressão Gênica , Peixe-Zebra/fisiologia , Animais , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/metabolismo , Átrios do Coração/metabolismo , Ventrículos do Coração/metabolismo , Células Musculares/metabolismo , Técnicas de Patch-Clamp , Peixe-Zebra/genética
9.
Prog Biophys Mol Biol ; 138: 59-68, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29655910

RESUMO

Na+ channel α-subunit composition of the zebrafish heart and electrophysiological properties of Na+ current (INa) of zebrafish ventricular myocytes were examined. Eight Na+ channel α-subunits were expressed in both atrium and ventricle of the zebrafish heart. Nav1.5Lb, an orthologue to the human Nav1.5, was clearly the predominant isoform in both chambers representing 65.2 ±â€¯4.1% and 83.1 ±â€¯2.1% of all Na+ channel transcripts in atrium and ventricle, respectively. Nav1.4b, an orthologue to human Nav1.4, formed 34.1 ±â€¯4.1 and 16.2 ±â€¯2.0% of the Na+ channel transcripts in atrium and ventricle, respectively. The density of INa and the rate of action potential upstroke in zebrafish ventricular myocytes at 28 °C were similar to those of human ventricles at the comparable temperature. Na+ channel isoforms and the main electrophysiological characteristics of the INa are largely similar in zebrafish and human hearts indicating evolutionary conservation of Na+ channel composition and function. The zebrafish INa differs from the human cardiac INa in terms of higher tetrodotoxin sensitivity (IC50-value = 5.3 ±â€¯0.1 nM) and slower inactivation kinetics. The zebrafish INa was inhibited with tricaine (MS-222) with an IC50-value of 1.2 ±â€¯0.18 mM (336 mg l-1), suggesting some care in the use of MS-222 as an anesthetic.


Assuntos
Fenômenos Eletrofisiológicos , Regulação da Expressão Gênica , Ventrículos do Coração/metabolismo , Sódio/metabolismo , Função Ventricular , Canais de Sódio Disparados por Voltagem/metabolismo , Peixe-Zebra , Aminobenzoatos/farmacologia , Animais , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Cinética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tetrodotoxina/farmacologia , Função Ventricular/efeitos dos fármacos
10.
Am J Physiol Regul Integr Comp Physiol ; 313(6): R711-R722, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28855177

RESUMO

Funny current (If), formed by hyperpolarization-activated cyclic nucleotide-gated channels (HCN channels), is supposed to be crucial for the membrane clock regulating the cardiac pacemaker mechanism. We examined the presence and activity of HCN channels in the brown trout (Salmo trutta fario) sinoatrial (SA) pacemaker cells and their putative role in heart rate (fH) regulation. Six HCN transcripts (HCN1, HCN2a, HCN2ba, HCN2bb, HCN3, and HCN4) were expressed in the brown trout heart. The total HCN transcript abundance was 4.0 and 4.9 times higher in SA pacemaker tissue than in atrium and ventricle, respectively. In the SA pacemaker, HCN3 and HCN4 were the main isoforms representing 35.8 ± 2.7 and 25.0 ± 1.5%, respectively, of the total HCN transcripts. Only a small If with a mean current density of -1.2 ± 0.37 pA/pF at -140 mV was found in 4 pacemaker cells out of 16 spontaneously beating cells examined, despite the optimization of recording conditions for If activity. If was not found in any of the 24 atrial myocytes and 21 ventricular myocytes examined. HCN4 coexpressed with the MinK-related peptide 1 (MiRP1) ß-subunit in CHO cells generated large If currents. In contrast, HCN3 (+MiRP1) failed to produce If in the same expression system. Cs+ (2 mM), which blocked 84 ± 12% of the native If, reversibly reduced fH 19.2 ± 3.6% of the excised multicellular pacemaker tissue from 53 ± 5 to 44 ± 5 beats/min (P < 0.05). However, this effect was probably due to the reduction of IKr, which was also inhibited (63.5 ± 4.6%) by Cs+ These results strongly suggest that fH regulation in the brown trout heart is largely independent on If.


Assuntos
Relógios Biológicos/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Nó Sinoatrial/fisiologia , Truta/metabolismo , Sequência de Aminoácidos , Animais , Células CHO , Césio/farmacologia , Cricetinae , Cricetulus , Regulação da Expressão Gênica/fisiologia , Átrios do Coração/citologia , Átrios do Coração/metabolismo , Frequência Cardíaca/fisiologia , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/antagonistas & inibidores , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp
11.
Artigo em Inglês | MEDLINE | ID: mdl-28007664

RESUMO

Temperature sensitivity of electrical excitability is a potential limiting factor for high temperature tolerance of ectotherms. The present study examines whether heat resistance of electrical excitability of cardiac myocytes is modified by seasonal thermal acclimatization in roach (Rutilus rutilus), a eurythermal teleost species. To this end, temperature dependencies of ventricular action potentials (APs), and atrial and ventricular K+ currents were measured from winter-acclimatized (WiR) and summer-acclimatized (SuR) roach. Under patch-clamp recording conditions, ventricular APs could be triggered over a wide range of temperatures (4-43°C) with prominent changes in resting membrane potential (RMP), AP duration and amplitude. In general, APs of SuR were slightly more tolerant to high temperatures than those of WiR, e.g. the break point temperature (TBP) of RMP was 37.6±0.4°C in WiR and 41±1°C in SuR (p<0.05). Of the two major cardiac K+ currents, the inward rectifier K+ current (IK1) was particularly heat resistant in both SuR (TBP 39.4±0.4°C) and WiR (TBP 40.0±0.4°C) ventricular myocytes. The delayed rectifier K+ current (IKr) was not as heat resistant as IK1. Surprisingly, IKr of WiR tolerated heat better (TBP 31.9±0.8°C) than IKr of SuR (TBP 24.1±0.5°C) (p<0.05). IKr (Erg2) channel transcripts of both atrial and ventricular myocytes were up-regulated in WiR. IK1 (Kir2) channel transcripts were not affected by seasonal acclimatization, although ventricular IK1 current was up-regulated in summer. Collectively, these findings show that thermal tolerance limits of K+ currents in isolated myocytes between seasonally acclimatized roach are much less pronounced than the heat sensitivity of ECG variables in intact fish.


Assuntos
Cyprinidae/fisiologia , Aclimatação/fisiologia , Potenciais de Ação , Animais , Cyprinidae/genética , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Miócitos Cardíacos/fisiologia , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sarcolema/metabolismo , Estações do Ano , Termotolerância
12.
J Exp Biol ; 220(Pt 3): 445-454, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27872214

RESUMO

The effects of sustained anoxia on cardiac electrical excitability were examined in the anoxia-tolerant crucian carp (Carassius carassius). The electrocardiogram (ECG) and expression of excitation-contraction coupling genes were studied in fish acclimatised to normoxia in summer (+18°C) or winter (+2°C), and in winter fish after 1, 3 and 6 weeks of anoxia. Anoxia induced a sustained bradycardia from a heart rate of 10.3±0.77 beats min-1 to 4.1±0.29 beats min-1 (P<0.05) after 5 weeks, and heart rate slowly recovered to control levels when oxygen was restored. Heart rate variability greatly increased under anoxia, and completely recovered under re-oxygenation. The RT interval increased from 2.8±0.34 s in normoxia to 5.8±0.44 s under anoxia (P<0.05), which reflects a doubling of the ventricular action potential (AP) duration. Acclimatisation to winter induced extensive changes in gene expression relative to summer-acclimatised fish, including depression in those genes coding for the sarcoplasmic reticulum calcium pump (Serca2a_q2) and ATP-sensitive K+ channels (Kir6.2) (P<0.05). Genes of delayed rectifier K+ (kcnh6) and Ca2+ channels (cacna1c) were up-regulated in winter fish (P<0.05). In contrast, the additional challenge of anoxia caused only minor changes in gene expression, e.g. depressed expression of Kir2.2b K+ channel gene (kcnj12b), whereas expression of Ca2+ (cacna1a, cacna1c and cacna1g) and Na+ channel genes (scn4a and scn5a) was not affected. These data suggest that low temperature pre-conditions the crucian carp heart for winter anoxia, whereas sustained anoxic bradycardia and prolongation of AP duration are directly induced by oxygen shortage without major changes in gene expression.


Assuntos
Adaptação Fisiológica , Carpas/fisiologia , Oxigênio/metabolismo , Aclimatação , Potenciais de Ação , Anaerobiose , Animais , Carpas/genética , Eletrocardiografia , Regulação da Expressão Gênica , Coração/fisiologia , Frequência Cardíaca , Estações do Ano
13.
Channels (Austin) ; 10(2): 101-10, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26671745

RESUMO

The zebrafish (Danio rerio) has become a popular model for human cardiac diseases and pharmacology including cardiac arrhythmias and its electrophysiological basis. Notably, the phenotype of zebrafish cardiac action potential is similar to the human cardiac action potential in that both have a long plateau phase. Also the major inward and outward current systems are qualitatively similar in zebrafish and human hearts. However, there are also significant differences in ionic current composition between human and zebrafish hearts, and the molecular basis and pharmacological properties of human and zebrafish cardiac ionic currents differ in several ways. Cardiac ionic currents may be produced by non-orthologous genes in zebrafish and humans, and paralogous gene products of some ion channels are expressed in the zebrafish heart. More research on molecular basis of cardiac ion channels, and regulation and drug sensitivity of the cardiac ionic currents are needed to enable rational use of the zebrafish heart as an electrophysiological model for the human heart.


Assuntos
Arritmias Cardíacas/fisiopatologia , Coração/fisiologia , Canais de Potássio/metabolismo , Canais de Sódio/metabolismo , Peixe-Zebra/fisiologia , Potenciais de Ação/fisiologia , Animais , Arritmias Cardíacas/metabolismo , Eletrocardiografia , Coração/anatomia & histologia , Ventrículos do Coração/anatomia & histologia , Humanos , Modelos Biológicos , Especificidade da Espécie , Peixe-Zebra/anatomia & histologia
14.
Hum Gene Ther ; 26(8): 560-71, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26176404

RESUMO

Large-scale vector manufacturing for phase III and beyond has proven to be challenging. Upscaling the process with suspension cells is increasingly feasible, but many viral production applications are still applicable only in adherent settings. Scaling up the adherent system has proven to be troublesome. The iCELLis(®) disposable fixed-bed bioreactors offer a possible option for viral vector manufacturing in large quantities in an adherent environment. In this study, we have optimized adenovirus serotype 5 manufacturing using iCELLis Nano with a cultivation area up to 4 m(2). HEK293 cell cultivation, infection, and harvest of the virus (by lysing the cells inside the bioreactor) proved possible, reaching total yield of up to 1.6×10(14) viral particles (vp)/batch. The iCELLis 500 is designed to satisfy demand for large-scale requirements. Inoculating a large quantity of cell mass into the iCELLis 500 was achieved by first expanding the cell mass in suspension. Upscaling the process into an iCELLis 500/100 m(2) cultivation area cassette was practical and produced up to 6.1×10(15) vp. Flask productivity per cm(2) in iCELLis Nano and iCELLis 500 was in the same range. As a conclusion, we showed for the first time that iCELLis 500 equipment has provided an effective way to manufacture large batches of adenoviral vectors.


Assuntos
Adenoviridae/fisiologia , Cultura de Vírus , Reatores Biológicos , Proliferação de Células , Meios de Cultura , Vetores Genéticos , Células HEK293 , Humanos , Replicação Viral
15.
Artigo em Inglês | MEDLINE | ID: mdl-26215639

RESUMO

Fishes are increasingly used as models for human cardiac diseases, creating a need for a better understanding of the molecular basis of fish cardiac ion currents. To this end we cloned KCNH6 channel of the crucian carp (Carassius carassius) that produces the rapid component of the delayed rectifier K(+) current (IKr), the main repolarising current of the fish heart. KCNH6 (ccErg2) was the main isoform of the Kv11 potassium channel family with relative transcript levels of 98.9% and 99.6% in crucian carp atrium and ventricle, respectively. KCNH2 (ccErg1), an orthologue to human cardiac Erg (Herg) channel, was only slightly expressed in the crucian carp heart. The native atrial IKr and the cloned ccErg2 were inhibited by similar concentrations of verapamil, terfenadine and KB-R7943 (P>0.05), while the atrial IKr was about an order of magnitude more sensitive to E-4031 than ccErg2 (P<0.05) suggesting that some accessory ß-subunits may be involved. Sensitivity of the crucian carp atrial IKr to E-4031, terfenadine and KB-R7943 was similar to what has been reported for the Herg channel. In contrast, the sensitivity of the crucian carp IKr to verapamil was approximately 30 times higher than the previously reported values for the Herg current. In conclusion, the cardiac IKr is produced by non-orthologous gene products in fish (Erg2) and mammalian hearts (Erg1) and some marked differences exist in drug sensitivity between fish and mammalian Erg1/2 which need to be taken into account when using fish heart as a model for human heart.


Assuntos
Carpas/metabolismo , Canais de Potássio de Retificação Tardia/antagonistas & inibidores , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Proteínas de Peixes/antagonistas & inibidores , Coração/efeitos dos fármacos , Miocárdio/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Sequência de Aminoácidos , Animais , Células CHO , Carpas/genética , Clonagem Molecular , Cricetulus , Canais de Potássio de Retificação Tardia/genética , Canais de Potássio de Retificação Tardia/metabolismo , Relação Dose-Resposta a Droga , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Feminino , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Masculino , Potenciais da Membrana , Modelos Animais , Dados de Sequência Molecular , Potássio/metabolismo , RNA Mensageiro/metabolismo , Especificidade da Espécie , Transfecção
16.
Pflugers Arch ; 467(12): 2437-46, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25991088

RESUMO

Electrophysiological properties and molecular background of the zebrafish (Danio rerio) cardiac inward rectifier current (IK1) were examined. Ventricular myocytes of zebrafish have a robust (-6.7 ± 1.2 pA pF(-1) at -120 mV) strongly rectifying and Ba(2+)-sensitive (IC50 = 3.8 µM) IK1. Transcripts of six Kir2 channels (drKir2.1a, drKir2.1b, drKir2.2a, drKir2.2b, drKir2.3, and drKir2.4) were expressed in the zebrafish heart. drKir2.4 and drKir2.2a were the dominant isoforms in both the ventricle (92.9 ± 1.5 and 6.3 ± 1.5%) and the atrium (28.9 ± 2.9 and 64.7 ± 3.0%). The remaining four channels comprised together less than 1 and 7 % of the total transcripts in ventricle and atrium, respectively. The four main gene products (drKir2.1a, drKir2.2a, drKir2.2b, drKir2.4) were cloned, sequenced, and expressed in HEK cells for electrophysiological characterization. drKir2.1a was the most weakly rectifying (passed more outward current) and drKir2.2b the most strongly rectifying (passed less outward current) channel, whilst drKir2.2a and drKir2.4 were intermediate between the two. In regard to sensitivity to Ba(2+) block, drKir2.4 was the most sensitive (IC50 = 1.8 µM) and drKir2.1a the least sensitive channel (IC50 = 132 µM). These findings indicate that the Kir2 isoform composition of the zebrafish heart markedly differs from that of mammalian hearts. Furthermore orthologous Kir2 channels (Kir2.1 and Kir2.4) of zebrafish and mammals show striking differences in Ba(2+)-sensitivity. Structural and functional differences needs to be taken into account when zebrafish is used as a model for human cardiac electrophysiology, cardiac diseases, and in screening cardioactive substances.


Assuntos
Potenciais de Ação , Miócitos Cardíacos/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Multimerização Proteica , Proteínas de Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Bário/farmacologia , Células Cultivadas , Células HEK293 , Átrios do Coração/citologia , Ventrículos do Coração/citologia , Humanos , Dados de Sequência Molecular , Miócitos Cardíacos/fisiologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/genética , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética
17.
J Comp Physiol B ; 184(3): 319-27, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24395518

RESUMO

Freshwater fishes of north-temperate latitudes adjust electrical excitability of the heart to seasonal temperature changes by changing expression levels of ion channel isoforms. However, little is known about thermal responses of action potential (AP) in the hearts of marine polar fishes. To this end, we examined cardiac AP in the atrial myocardium of the Arctic navaga cod (Eleginus navaga) from the White Sea (Russia) acclimatized to winter (March) and summer (September) seasons. Acute increases in temperature from 4 to 10 °C were associated with increases in heart rate, maximum velocity of AP upstroke and negative resting membrane potential, while duration of AP was shortened in both winter-acclimatized and summer-acclimatized navaga hearts. In winter, there was a compensatory shortening (41.1%) of atrial AP duration and this was associated with a strong increase in transcript expression of Erg K(+) channels, known to produce the rapid component of the delayed rectifier K(+) current, I(Kr). Smaller increases were found in the expression of Kir2.1 channels that produce the inward rectifier K(+) current, I(K1). These findings indicate that the heart of navaga cod has a good acclimatory capacity in electrical excitation of cardiac myocytes, which enables cardiac function in the cold-eurythermal waters of the subarctic White Sea.


Assuntos
Aclimatação , Potenciais de Ação/fisiologia , Gadiformes/fisiologia , Átrios do Coração , Animais , Regiões Árticas , Canais de Potássio Éter-A-Go-Go/genética , Regulação da Expressão Gênica , Frequência Cardíaca/fisiologia , Miócitos Cardíacos/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/genética , Federação Russa , Estações do Ano , Temperatura
18.
Mar Drugs ; 9(11): 2409-2422, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163193

RESUMO

Evolutionary origin and physiological significance of the tetrodotoxin (TTX) resistance of the vertebrate cardiac Na(+) current (I(Na)) is still unresolved. To this end, TTX sensitivity of the cardiac I(Na) was examined in cardiac myocytes of a cyclostome (lamprey), three teleost fishes (crucian carp, burbot and rainbow trout), a clawed frog, a snake (viper) and a bird (quail). In lamprey, teleost fishes, frog and bird the cardiac I(Na) was highly TTX-sensitive with EC(50)-values between 1.4 and 6.6 nmol·L(-1). In the snake heart, about 80% of the I(Na) was TTX-resistant with EC(50) value of 0.65 µmol·L(-1), the rest being TTX-sensitive (EC(50) = 0.5 nmol·L(-1)). Although TTX-resistance of the cardiac I(Na) appears to be limited to mammals and reptiles, the presence of TTX-resistant isoform of Na(+) channel in the lamprey heart suggest an early evolutionary origin of the TTX-resistance, perhaps in the common ancestor of all vertebrates.


Assuntos
Miócitos Cardíacos/efeitos dos fármacos , Canais de Sódio/efeitos dos fármacos , Tetrodotoxina/toxicidade , Animais , Relação Dose-Resposta a Droga , Resistência a Medicamentos , Técnicas In Vitro , Miócitos Cardíacos/metabolismo , Canais de Sódio/metabolismo , Especificidade da Espécie , Tetrodotoxina/administração & dosagem , Vertebrados
19.
Am J Physiol Regul Integr Comp Physiol ; 301(1): R255-65, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21508292

RESUMO

Ectothermic vertebrates experience acute and chronic temperature changes which affect cardiac excitability and may threaten electrical stability of the heart. Nevertheless, ectothermic hearts function over wide range of temperatures without cardiac arrhythmias, probably due to special molecular adaptations. We examine function and molecular basis of the slow delayed rectifier K(+) current (I(Ks)) in cardiac myocytes of a eurythermic fish (Carassius carassius L.). I(Ks) is an important repolarizing current that prevents excessive prolongation of cardiac action potential, but it is extremely slowly activating when expressed in typical molecular composition of the endothermic animals. Comparison of the I(Ks) of the crucian carp atrial myocytes with the currents produced by homomeric K(v)7.1 and heteromeric K(v)7.1/MinK channels in Chinese hamster ovary cells indicates that activation kinetics and pharmacological properties of the I(Ks) are similar to those of the homomeric K(v)7.1 channels. Consistently with electrophysiological properties and homomeric K(v)7.1 channel composition, atrial transcript expression of the MinK subunit is only 1.6-1.9% of the expression level of the K(v)7.1 subunit. Since activation kinetics of the homomeric K(v)7.1 channels is much faster than activation of the heteromeric K(v)7.1/MinK channels, the homomeric K(v)7.1 composition of the crucian carp cardiac I(Ks) is thermally adaptive: the slow delayed rectifier channels can open despite low body temperatures and curtail the duration of cardiac action potential in ectothermic crucian carp. We suggest that the homomeric K(v)7.1 channel assembly is an evolutionary thermal adaptation of ectothermic hearts and the heteromeric K(v)7.1/MinK channels evolved later to adapt I(Ks) to high body temperature of endotherms.


Assuntos
Adaptação Fisiológica/fisiologia , Regulação da Temperatura Corporal/fisiologia , Carpas/fisiologia , Canais de Potássio de Retificação Tardia/fisiologia , Coração/fisiologia , Canal de Potássio KCNQ1/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Potenciais de Ação/fisiologia , Sequência de Aminoácidos , Animais , Temperatura Corporal/fisiologia , Colforsina/farmacologia , Canais de Potássio de Retificação Tardia/efeitos dos fármacos , Dados de Sequência Molecular , Filogenia
20.
J Exp Biol ; 211(Pt 13): 2162-71, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18552306

RESUMO

A new member of the inward-rectifier K(+) channel subfamily Kir2 was isolated and characterised from the crucian carp (Carassius carassius) heart. When expressed in COS-1 cells this 422 amino acid protein produced an inward-rectifying channel with distinct single-channel conductance, mean open time and open probability. Phylogenetic sequence comparisons indicate that it is not homologous to any known vertebrate Kir channel, yet belongs to the Kir2 subfamily. This novel crucian carp channel increases the number of vertebrate Kir2 channels to five, and has therefore been designated as ccKir2.5 (cc for Carassius carassius). In addition to the ccKir2.5 channel, the ccKir2.2 and ccKir2.1 channels were expressed in the crucian carp heart, ccKir2.1 being present only in trace amounts (<0.8% of all Kir2 transcripts). Whole-cell patch clamp in COS-1 cells demonstrated that ccKir2.5 is a stronger rectifier than ccKir2.2 or ccKir2.1, and therefore passes weakly outward current. Single-channel conductance, mean open time and open probability of ccKir2.5 were, respectively, 1.6, 4.96 and 4.17 times as large as that of ccKir2.2. ccKir2.5 was abundantly expressed in atrium and ventricle of the heart and in skeletal muscle, but was a minor component of Kir2 in brain, liver, gill and kidney. Noticeably, ccKir2.5 was strongly responsive to chronic cold exposure. In fish reared at 4 degrees C for 4 weeks, ccKir2.5 mRNA formed 59.1+/-2.1% and 65.6+/-3.2% of all ccKir2 transcripts in atrium and ventricle, respectively, while in fish maintained at 18 degrees C the corresponding transcript levels were only 16.2+/-1.7% and 23.3+/-1.7%. The increased expression of ccKir2.5 at 4 degrees C occurred at the expense of ccKir2.2, which was the main Kir2 isoform in 18 degrees C acclimated fish. A cold-induced increase in the slope conductance of the ventricular I K1 from 707+/-49 to 1001+/-59 pS pF(-1) (P<0.05) was thus associated with an isoform shift from ccKir2.2 towards ccKir2.5, suggesting that ccKir2.5 is a cold-adapted and ccKir2.2 a warm-adapted isoform of the inward-rectifying K+ channel.


Assuntos
Carpas/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Aclimatação/genética , Aclimatação/fisiologia , Animais , Sequência de Bases , Células COS , Carpas/genética , Chlorocebus aethiops , Temperatura Baixa , Primers do DNA/genética , Eletrofisiologia , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp , Filogenia , Canais de Potássio Corretores do Fluxo de Internalização/classificação , Canais de Potássio Corretores do Fluxo de Internalização/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Distribuição Tecidual , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...